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A simple analytical approach, based on scalar wave approximation, is employed to study the modal propagation 
characteristics of a new type of double-clad optical waveguide with an Archimedean spiral shaped cross-section. By using 
the boundary conditions under the weak-guidance approximation in appropriate orthogonal coordinates , for the proposed 
structure, we obtain a modal eigen value equation. By solving the equation, we plot dispersion curves  and comparing these 
curves, numerical results based on cutoff frequencies and the number of modes, are discussed. As we increase the inner 
cladding width,  the cutoff  V-value also increases and waveguide offers a single mode up to V=13.8. An attempt has been 
made to compare our results obtained for doubly clad optical waveguide with a single clad waveguide having the cross -
section of the same shape under similar conditions. It is noted that the double-clad Archimedean spiral waveguide provides 
an additional degree of freedom to control the cutoff frequencies  and monomode operation, where the inner cladding width 
can tailor the cutoff conditions within a certain limit. 
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1.  Introduction 
 

Optical waveguides with different core-geometries 

have been analysed during the past decades, and 

unconventional waveguides have aroused great renewed 

interest in exploring a wide variety of such core cross-

sections. One of the reasons of studying non-circular 

cross-section in a waveguide is to investigate the effect of 

distortion in the usual circular cross-section; however such 

distortion may not always be of symmetrical nature.  In 

1969, Marcatili [1] first analyzed the modal dispersion 

features of a rectangular core guiding structure with an 

analytical solution, whereas Goell [2] demonstrated 

dispersion characteristics of the rectangular waveguide 

using numerical and computer based calculations. Many 

no-circular waveguides with a variety of characteristics , 

having immense scope in integrated optics , have been 

analyzed [3-15]. 

The propagation characteristic of waveguide can be 

highly affected by introducing claddings of new materials 

[16-19]. Waveguides with more than one cladding layers, 

e.g. doubly clad M-profile and W-profile waveguides are 

found to be of great importance in research. Such double-

clad waveguides [20-22] control their propagation 

characteristics offering some additional degree of freedom. 

Investigators have already proposed many optical 

waveguides with double layer or multilayered structures . 

Although the unconventional core-geometries offer a 

number of applications, there are a few limitations for 

tailoring propagation characteristics dynamically in time 

that can be overcome by using smart materials like chiral, 

liquid crystal and plasma [22]. Among them, single mode 

fibers [23-26] have great advantages in communication 

that can also be achieved by using double-clad waveguide 

with smart unconventional structures. The basic 

advantages of these type of waveguide is to have low 

dispersion over a wide wavelength range and also 

attractive for high-bit-rate light wave communication 

system [22].   

Song and Leonhardt [27] have employed and 

demonstrated the ray-optics approach to calculate the 

single mode conditions of rectangular waveguides faster 

than those compared with the physical-optics. It offers 

visualized-oriented approach to analyze the propagation 

through three-dimensional waveguides, whose results are 

in a very good agreement with  those obtained by  the 

researchers  with vectorial computer simulation 

techniques.   

In recent, Grote
 
and Bassett [28]  have also suggested 

a waveguide design using negative high refractive-index 

substrates, where they propose that such  geometry can be 

adapted for any high-index substrate material  leading to 

offer platforms for nonlinear photonics. Kawakami et al. 

[29] determined the bending loss of a doubly clad slab 

waveguide in which the core has the largest refractive 

index, and the inner cladding has the lowest and 

demonstrated the drastic reduction in bending losses by 

inserting low-index inner claddings between the core and 

http://scitation.aip.org/search?value1=Richard+R.+Grote&option1=author&option912=resultCategory&value912=ResearchPublicationContent
http://scitation.aip.org/search?value1=Lee+C.+Bassett&option1=author&option912=resultCategory&value912=ResearchPublicationContent
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the outer cladding. They determined bending-loss 

formulas of a multilayer planar optical waveguide on the 

basis of continuation of wave functions without solving 

the complicated eigen value equation. 

In this article, the authors propose a new type of 

unconventional double-clad optical lightguide having 

Archimedean shaped cross-section, whose theoretical 

understanding such as, modal cutoff condition and 

propagation properties are determined using an analytical 

method. By making use of boundary conditions, a 

characteristic eigen equation is derived for the proposed 

unconventional waveguide, which is used to plot the 

dispersion curves. In this analysis, we concentrate on the 

effect of the inner cladding width on the lowest cutoff 

value and propagation modes, and the findings of this 

theoretical study are discussed in details. Further, the 

obtained results are compared with those of Singh el al. 

[14] under similar conditions , and some insights are 

drawn. Propagation in such an unconventional double-clad 

waveguide is highly affected by the width of the inner 

cladding and it is demonstrated that the proposed 

waveguide can be operated in monomode.  

 Our main motivation is to study a new 

unconventional structure that gives new characteristics and 

insights so that some researchers interested for novel 

property of such unconventional waveguide for use in 

engineering and technology can choose this particular 

waveguide with desired property from the present 

investigation. However, the feasibility of fabrication, if not 

already there, is not remote in view of modern advances in 

nano-technology if only the experimentalists and practical 

engineers are sufficiently interested or encouraged to take 

up this sort of work [9]. 

 

 

2. Theoretical Formulation 
 

The transverse section of a waveguide having a core 

refractive index n
1
 and cladding refractive index n

2
 (such 

that n
1
-n

2
 is very small) is shown in Fig. 1(a) and its 

index profile is shown in Fig.1 (b). For weakly guiding 

fibers, all the modes having same cut-off V-values 

degenerate, i.e, their b V curves almost merge. In 

weakly guiding situation there is substantial spread of 

fields in the cladding. The optical energy is not tightly 

confined to the core and is weakly guided.  Here, we 

cannot identify the nature and kind of modes but on the 

basis of no. of modes and cutoff V-value we can 

investigate the modal propagation characteristics with 

some approximation [7]. 

The shape of the spiral is represented by the equation 

 

r  ,          (1) 

 

where   is a size parameter. 

To obtain the appropriate coordinates, one can use the 

points of intersection of two sets of normal curves in the 

cross-sectional plane of the waveguide. Now, the equation 

representing the normal curve can be written as  
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Fig. 1(a). The  cross-sectional geometry of the  proposed 
waveguide 

 

 

 
 

Fig. 1(b).  Refractive index profile of the waveguide under 
consideration 
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The scalar Helmholtz equation is given by 
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And   is the scalar approximation of any one of the 

cartesian components of the electric and magnetic fields. 

Proceeding further with this differential equation would be 

tedious unless some assumption is made for 

simplifications. If we choose   , we have a 

manageable special case. Here,  is a angular frequency, 

1  is the permittivity of the guiding region (core) and  is 

the permeability. Using this assumption in equation (3), 

the modified differential equation is given by 
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The technique of separation of variables will now be 

applied to obtain a solution as given in equation (4). We 

can obtain a solution for   in terms of  and ; that is, 
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where   is the propagation constant along z-direction. 

After a few steps, we obtain three equations, each of 

which is in one variable as  
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Equation (7) is valid for the guiding region and 

equation (8) for the cladding regions, respectively. 

Using new symbols 
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x  in Eqs.  (7) and (8),  and we have 
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Hence the axial field components for the proposed 

waveguide in various regions can be written as 
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Matching the fields at the boundaries x =a  and x =a1 

as shown Fig. 1(a), we get  
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Now employing the corresponding expressions for the 

electromagnetic fields in different regions in Eq. (14), we 

get the following characteristic equation:     
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This equation (15) is known as the eigen value 

equation or characteristics equation. 

The prime (/) of above equation represents differential 

with respect to the argument. The dimensionless V-

parameter or the normalized frequency parameter is 

introduced to incorporate the parameters n1, n2, n3, a, a1 

and k0, which may possibly have an effect on the 

propagation. We define this parameter as  
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where k0 is vacuum wave number.  

 

 

3.  Results and discussion 
 

The characteristic equation (15) contains all the 

information that can be obtained from this analysis, and 

represents the central key points of this investigation. 

Generally, the exact modal analysis for unconventional 

optical waveguide is formidable. However, a highly 

accurate approximation known as weak-guidance 

approximation, Δ= ((ncore− ncladding)/ncore) << 1, where 

difference between core and cladding refractive indices is 

very less than 1, and Δ is usually less than 0.02; is used for 

the weakly guided modes. Such conditions in 

communication channels allow for making the 

mathematical analysis by the scalar wave equation in 

terms of the Cartesian components of the E- and H-fields. 

Although Δ is also less than 1 for strong-guidance, it may 

be closer to 1. Strong-guidance is important in 

illumination engineering, however weak-guidance 

approximation gives sufficient approximated important 

results, including the cut-off V-values and number of 

modes, useful for optical communications [22].  

We illustrate features of the waveguide with the help 

of equation (15) by taking 50.11 n , 45.12 n , and  

46.13 n  under weak-guidance approximation. Here, 

free space wavelength is chosen as m 55.10  . Next, 

we plot the L.H.S. of equation (15) against   by 

considering equally spaced  - values in the propagation 

range 0201 knkn   , for a fixed value of a. The 

intersections of the graph with the  -axis give the 

possible allowed values of . This procedure is repeated 

for a large number of values of a, and the normalized 

propagation constant b can be obtained by using the 

relation: 
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The successive zero crossings of a typical   versus 

graphs will correspond to the successive modes. We can 

now plot the V versus b graph for each mode. Here, V is a 

dimensionless-parameter defined by 2

1

2
2

2
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nnaV 


 . 

These dispersion curves are shown in Figs. 2 to 7 for these 

modes. The cutoff values obtained from the eigen-value 

equation (15), for different values of thickness t of the 

inner cladding region, are also mentioned in Table 1. Now, 

we discuss some important features of the dispersion 

curves obtained in the present study. An interesting 

inference is that at t = 0.01 m ,  the waveguide behaves 

as a single mode guide for a large value of V, viz., 12, and 

even for V=20, there are only three modes. `  

Though narrow end in a cross-section is rarely 

visualized, wider end the cross-section is similar to that of 

a distorted slab waveguide consisting of curvature and 

flare. Therefore, it can be said that such a waveguide can 

be useful in the study of the tolerance behavior of 

deformed slab waveguide. As we increase the width  t  

from .01 m  to mt 2 ,  the cutoff V-value also 

increases and waveguide behaves as a single mode guide 

up to V=13.8. The cutoff value is greater and such 

waveguide is highly appropriate for the single mode 

propagation, which is needed for the sake of simplicity in 

manufacturing process of such waveguides, and it can be 

useful as desired in the scientific area of communication. It 

is noted that cutoff frequencies increase with increase in 

the inner cladding width. Thus, this is an important feature 

of the proposed waveguide with an additional degree of 

freedom to control the cutoff frequencies.  

 Further, we make comparison of these results 

with those obtained by Singh et al. [14] under similar 

conditions at mt 01. . Comparing these values , we 

find that the cutoff V-values at mt 01.0  are 

V=5.1530, V=12.229 and V=19.262, as obtained from 

Fig.2, are much larger than the cut V-values V=1.66, 

V=8.67, V=15.67 obtained by Singh et al. Hence we 

conclude that the cutoff V-value is highly affected by the 

width of the introduced inner cladding region. This is the 

most important insight of the waveguide that it provides an 

additional degree of freedom to control the cutoff 

frequencies as well as single mode operation according to 

our choice. 

 

 

4. Conclusion 
 

An analytical method with scalar wave approximation 

is employed to analyze the modal behavior of a double-

clad Archimedean shaped optical waveguide. In 
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appropriate orthogonal coordinates , the boundary 

conditions under the weak-guidance approximation, are 

imposed to obtain a modal eigen value equation for the 

proposed waveguide. With the help of this  equation, we 

plot dispersion curves and by comparing these curves, 

cutoff frequencies and number of modes are calculated and 

discussed. It is found that, as we increase the width t, the 

cutoff V-value also increases and waveguide offers a 

single mode up to V=13.8. An attempt has been made to 

compare our results obtained for such doubly clad optical 

waveguide with a single clad waveguide having the cross -

section of the same type, under the similar conditions. It is 

noted that the double clad Archimedean spiral waveguide 

provides larger cutoff frequencies. Most important point is 

that the inner cladding width can tailor the cutoff 

conditions of the waveguide within a certain limit. Hence 

one can say that such a waveguide can provide an 

additional degree of freedom to control the cutoff 

frequencies and single mode operation. Furthermore, it is 

recommended that such waveguide can be highly 

appropriate for single mode propagation, as desired in 

manufacturing of waveguide. Single mode operation can 

be useful in communication industry as they do not offer 

intermodal dispersion and having lower propagation losses 

and hence the waveguide can offer much beneficial at high 

data rates in long distance communication. 
 

 
Table 1. The cutoff frequencies (cutoff V-values) of the waveguide under consideration for different values of thickness (t) 

 

Cutoff  

V-value 

t = 0.01µm t=0.1 µm t=0.2 µm  t=0.5 µm  t=1.0 µm  t=2.0 µm  

V1 5.1530 5.3629 5.5715 6.0508 6.4723 6.7120 

V2 12.229 12.417 12.617 13.102 13.560 13.827 

V3 19.262 19.447 19.644 20.136 20.606 20.882 

 

 
 

Fig.2. Dispersion curves (b/ versus V) for the proposed 

waveguide for a few lowest modes  under  weak-guidance  

condition at t = 0.01m. 

 

 
 

Fig.3. Dispersion curves (b/ versus V) for the proposed 

waveguide for a few lowest modes under weak-guidance 

condition at t = 0.1m. 

 
 

Fig. 4. Dispersion curves (b/ versus V) for the proposed 

waveguide for a few lowest modes under weak-guidance 

condition at t = 0.2m. 
 

 
 

Fig. 5. Dispersion curves (b/ versus V) for the proposed 

waveguide for a few lowest modes under weak-guidance 

condition at t = 0.5m. 
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Fig. 6. Dispersion curves (b/ versus V) for the proposed 
waveguide for a few lowest modes under weak-guidance 

condition at t = 1m. 

 

 
 

Fig.7. Dispersion curves (b/ versus V) for the proposed 
waveguide for a few lowest modes under weak guidance-

condition at t = 2m. 

 

 

Acknowledgments 

 

The authors wish to acknowledge Dr. B. Prasad,     

Ex-Reader (Applied Physics, IIT-BHU) and one of the 

authors (N. Kumar) also extends his thanks to Dean-

CASH and President, Mody University; for their  

encouragement and support. Moreover, the authors are 

highly indebted to the unknown referee for the fruitful 

comments and suggestions for further improvement in the 

quality of the manuscript. 

 

 

References 

 

  [1] E. A. J.   Marcatili, Bell. Syst. Tech. J.  

        48, 2071 (1969). 

  [2] J.E. Goell, Bell Syst. Tech. J 48, 2133 (1969).  

  [3] R.B. Dyott, Electron. Letts. 26, 1721 (1990). 

  [4] C. Yeh, Optical and Quantum Electronics   

         8, 43 (1976). 

  [5] V. Singh, B. Prasad, S. P. Ojha, Opt. Fiber Technol.  

        6, 290 (2000). 

  [6] P. C. Pandey, B. K. Pandey, S. P. Ojha, Optik  

        5, 211 (2000). 

  [7] N. Kumar, S. P. Ojha, Optik 124, 773 (2013). 

  [8] S. N. Maurya, V. Singh, B. Prasad, S. P. Ojha,  

        J. Electromagnetic Wave Appl. JEMWA  

        20, 1021 (2006). 

  [9] V. Singh, Y. Prajapati, J. P. Saini, Prog.  

        Eletromagnetic Res. PIER 64, 191 (2006). 

[10] A. Kumar, V. Thyagaranjan, A. K. Ghatak, Opt. Lett.  

        8, 63 (1983). 

[11] K. S. Chiang, IEEE Trans. Microw. Theory Tech.  

        37, 349 (1991). 

[12] V. Mishra, P. K. Choudhary, P. Khastgir, S. P. Ojha,  

        Microwave Opt. Technol. Lett. 12, 250 (1996). 

[13] P. Sharan, P. Khastgir, P. K. Choudhury, S. P. Ojha,  

        Photonics and Optoelctronics. 3, 87 (1995). 

[14] V. Singh, B. Prasad, S. P. Ojha, Optik 111, 94 (2000). 

[15] V. Singh, S. P. Ojha, L. K. Singh, Microwave Opt.  

        Technol. Lett. 21, 121 (1999). 

[16] J. N. Polky, G. L. Mitchell, Opt. Soc. Am.  

       64, 274  (1974). 

[17] V. K. Varadan, A. Lakhtakia, V. V. Varadan,  

        J. Wave-Mater Interact. 3, 351 (1988). 

[18] P. K. Choudhury, T. Yoshino, Optik. 115, 49 (2004). 

[19] A. V. Novitsky, L. M. Barkovsky, J. Opt A. Pure  

        Appl. Opt. 7, 51 (2005). 

[20] N. Kumar, S. K. Srivastava, S. P. Ojha, Microwave  

        Opt. Technol. Lett. 37, 69 (2003). 

[21] S. Kawakami, S. Nishida, Journal of Quantum  

        Electronics, QE-11, 130 (1975). 

[22] R. Jatan,  R. Janma, V. Singh, N. Kumar, Optik  

        127, 5761 (2016). 

[23] A. W.  Snyder, Understanding of monomode optical  

        fibers, Proc. of IEEE. 69, 6 (1981). 

[24] A.  Ghatak, A. Sharma, J. Inst. Electronics Telecom.  

        Engrs. 32, 213 (1986). 

[25] T. Miya, K. Okamoto, Y. Ohmori, Y. Sasaki, IEEE J.  

        Quantum Electronics QE-17, 858 (1981). 

[26] A. Tomita, D. Marcuse, IEEE J. of Lightwave  

        Technology, LT-1, 249 (1983). 

[27] X. Song, R. Leonhardt, Progress in Electromagnetics   

        Research, PIER 135, 81 (2013). 

[28] R. R.  Grote, L. C. Bassett, APL Photonics  

        1, 071302 (2016). 

[29] S. Kawakami, M. Miyagi, S. Nishida, Applied   

        Optics 14, 2588 (1975). 

 

 

___________________________ 
*Corresponding author: drjanmaphy@gmail.com 

 

http://adsabs.harvard.edu/cgi-bin/author_form?author=Jatan,+R&fullauthor=Jatan,%20Ram&charset=UTF-8&db_key=PHY
http://adsabs.harvard.edu/cgi-bin/author_form?author=Janma,+R&fullauthor=Janma,%20Ram&charset=UTF-8&db_key=PHY
http://scitation.aip.org/search?value1=Richard+R.+Grote&option1=author&option912=resultCategory&value912=ResearchPublicationContent
http://scitation.aip.org/search?value1=Lee+C.+Bassett&option1=author&option912=resultCategory&value912=ResearchPublicationContent
mailto:drjanmaphy@gmail.com

